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1. Introduction

The N = 4 superconformal symmetry appears in the dynamics of a charged particle in

the near horizon geometry of a four-dimensional charged extremal black hole [1]. The

connection can be traced back to the geometry present in this case, which has the structure

of AdS2 ×S2. This implies that the mechanics describing the radial motion of the charged

particle in the near horizon geometry inherits the global conformal symmetry group in

one dimension, SO(1, 2), [2]. The near horizon geometry of the charged four-dimensional

extremal black hole is given by the Bertotti-Robinson metric1,

ds2 = −
( ρ

M

)2
dt2 +

(
M

ρ

)2

dρ2 + M2dΩ2. (1.1)

1For a review see [3, 4]

– 1 –



J
H
E
P
1
0
(
2
0
0
6
)
0
6
8

This geometry admits eight globally defined real Killing spinors (it is a BPS state with

four real local supersymmetries), which implies the existence of 8 real supercharges. Hence,

a simple mechanical model which captures this property is the PSU(1, 1|2) conformal

mechanics.2 The superfield equations of motion can be constructed using the method of

nonlinear realizations (NLR) in superspace [5, 6]. N-particle superconformal mechanics

has been studied in [7], where the relation with black hole physics is analyzed. N = 4

superconformal mechanics also arises in the computation of the macroscopic black hole

entropy of a D0-D4 black hole [8].

In this paper we will study more in general the dynamics of a superconformal parti-

cle. This dynamical action is constructed by the method of non-linear realizations without

using superfields or requiring additional constraints [9]. As in [5, 6], we consider the coset

PSU(1, 1|2) and no notion of geometry is used to construct the action. The Goldstone

fields will depend only on the world line parameter τ . This procedure allows us to consider

in a unified framework the cases of broken and unbroken supersymmetries. The lagrangian

will depend on six couplings constants, whose physical meaning is associated with char-

acteristics of the particle and the black hole, like mass, charge, angular momentum. In

the case with unbroken supersymmetries, a new local gauge symmetry, kappa symmetry,

appears so that half of the fermionic fields can be gauged away and a BPS lagrangian is ob-

tained. This symmetry appears when the coupling constants verify a precise relation. This

condition can be understood in two ways, as an equality between the Casimir invariants of

the SU(2) and the SO(1, 2) sectors, or more physically, as the equality m = e, where m and

e are the mass and the charge of the particle. In this case, the existence of supercharges, Q

and S, generating standard supersymmetry and superconformal transformations, respec-

tively, allows to consider two kinds of BPS configurations; those that saturate the bound

of the hamiltonian H =
[
Q,Q†

]
+
, and those saturating the bound of the special conformal

transformation generator K =
[
S, S†

]
+
.

In the superconformal model considered here, there also appear two bosonic local

symmetries, one corresponds to ordinary diffeomorphisms of the world line, and the other

is a U(1) gauge symmetry. The gauge symmetries appearing in this model are understood

as a right action of the coset following reference [10]. The U(1) symmetry only transforms

the Goldstone fields associated to SU(2) coordinates. Putting the fermions to zero two

decoupled lagrangians are obtained: i) the conformal mechanics lagrangian written in a

diffeomorphism invariant form, and ii) the lagrangian of a particle on a sphere in which a

monopole is located at the center. The latter system has only one degree of freedom, in

agreement with the existence of the U(1) gauge symmetry. If the fermions are switched

on, the two systems interact but the U(1) symmetry still remains.

It is well known that, at the quantum level, the conformal mechanics has no ground

state associated to the hamiltonian H and the wave function spreads out to spatial infinity.

In [2], de Alfaro, Fubini and Furlan suggested that one should consider the eigenstates of

the compact operator P0 = 1
2 (H + K) which has a discrete spectrum and normalizable

2This group is often referred to as SU(1, 1|2), although this group contains nontrivial central extensions,

which are absent in PSU(1, 1|2).
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eigenstates. From the perspective of the particle motion near the black hole, this corre-

sponds to a different choice of time [1]. In fact, the variable conjugate to P0 is the global

time of AdS2 and can describe the motion of the particle entering in horizon, instead the

time conjugate to H only describes the motion of the particle outside the horizon. There-

fore, it is also natural to study the dynamics of the superconformal particle using the new

basis, that we call the AdS basis3. In our approach this implies a new parametrization of

the coset, leading to a new parametrization for the action (see section 5). The system is

now described by a relativistic lagrangian containing two square roots, plus a WZ term

that represents the coupling of the particle to the electromagnetic field. This lagrangian

has also three gauge invariances as in the previous parametrization, also referred to as the

conformal basis.

In summary, the N = 4 super conformal model, which is presented here in two different

basis, describes the equatorial motion of a particle in the background of a near horizon

of a N = 2, charged, four-dimensional, extremal black hole. A D(2, 1, α) superconformal

mechanics in superfield formalism of [12] describes also a motion of a particle in a equatorial

plane. A general three-dimensional motion in N = 4 conformal mechanics [8], [13, 14]4 is

not obtained with the coset considered here. It is natural to ask whether there exits other

cosets that can produce a general three-dimensional motion without further physical or

geometrical requirements.

The outline of the paper is as follows. In section 2, the Maurer-Cartan (MC) forms

are constructed, and in section 3 the Lagrangian in the conformal basis is presented. In

section 4 the gauge symmetries of the model and the gauge fixed form of the lagrangian

are studied, and in section 5 an AdS parametrization of the coset is given. section 6 is

devoted to discussions. There are five appendices with some technical details.

2. The PSU(1, 1|2) Lie algebra and its NLR

The essential feature of the MC forms that make them useful objects to describe dynamical

systems is that they define invariants under a non-linearly realized group action. The first

step to calculate them is to choose a coset, in this case, it follows from the discussion in

the introduction that the choice will be PSU(1, 1|2). The associated algebra is formed

by generators of dilatation D, special conformal transformations K, time translations H,

SU(2) rotations Ja, four supersymmetries Qi, Q†
i , and four superconformal symmetries Si,

S†
i . The algebra is given in the appendix A.

Then it is possible to locally parametrize an arbitrary supergroup element g as: 5

g = g0e
i(Qη†+ηQ†)ei(Sλ†+λS†)gJ , g0 = e−itHeizDeiωK , gJ = eiθ1J1eiθ2J2eiθ3J3. (2.1)

In this approach, the coordinates ZM = {t, z, ω, η, η† , λ, λ†, θa} in the group manifold will

become functions (Goldstone fields) of the worldline parameter τ –and not superfields [9]–

3A different parametrization for the AdS basis is used in [11].
4This author employs the non-linear realization approach with a different coset, making use of the

geometry of curves to construct the superconformal action [15].
5In the following, the index i of the fermionic fields will not be written explicitly.
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after the pullback on the world line of the particle is taken. Note that we have also

introduced a Goldstone field, t, associated to the unbroken translation H. Here g0 and gJ

parametrize the SO(2, 1) and the SU(2) group elements, respectively.

The left-invariant (LI) MC one-form Ω is given by

Ω = −ig−1dg = LHH+LDD+LKK+QL†Q+LQQ†+SL†S+LSS†+LaJa = LAGA, (2.2)

where the one-forms LA = dZMLA
M are given in appendix A. The MC one-form Ω satisfies

the MC equation

dΩ = −iΩ ∧ Ω,

which merely asserts that (2.2) defines a flat connection. By definition of the LI MC

one forms LA are invariant under the left action of the group. The explicit form of the

infinitesimal group action on the Goldstone fields is constructed in the next section.

2.1 Global symmetry

A mechanical system is defined by an action principle, which in this case is given by

the integral along the worldline of the pullback of the bosonic LI MC forms. In order

to characterize the states of the system, it is necessary to identify the invariances of the

action explicitly through the left transformation of the Goldstone fields, δLZM , under the

symmetry group.

As we have introduced all the generators to parametrize the group element g, each

MC one-form component LA is invariant under global (rigid) group transformations. The

transformation of the Goldstone fields is defined from the left action of the group on g(ZM )

as

g(ZM ) → eiεAGAg(ZM ) = g(ZM + δLZM ). (2.3)

At the level of the algebra, the left translations δLZM , are generated by the right-

invariant (RI) vector fields ṼB , dual to the RI MC forms [16],

Ω̃ = −idgg−1 = dZMRM
AGA. (2.4)

The RI vector fields ṼB are related to the variations of the Goldstone fields δLZM through

Ṽ = δLZM ∂

∂ZM
= εA (R−1)A

M ∂

∂ZM
= εAṼA. (2.5)

This observation provides an alternative way to construct the δLZM . From the previous

discussion it follows that the bosonic global transformations for PSU(1, 1|2) are given by

Time translations : δH t = −εH , (2.6)

Dilatations : δDt = tεD, δDz = εD, (2.7)

Special Conformal : δKt = −t2εK , δKz = −2tεK , δKω = ezεK , (2.8)

SU(2) Rotations : δSU(2)η = − i

2
ησaε

a, δSU(2)λ = − i

2
λσaε

a, (2.9)

δSU(2)θ
b = (R−1)baε

a. (2.10)

The conjugate coordinates η† and λ† transform correspondingly. The matrix (R−1)ba is

given in appendix A and the supersymmetry transformations are in appendix B. In the

next section, the action principle is constructed.
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3. Dynamics of the superconformal mechanics

The set of LI one-forms obtained from the Lie superalgebra psu(1, 1|2) can be used as

lagrangians for mechanical systems since they are, by definition, objects that can be inte-

grated along one dimensional trajectories. If we assume an action with the lower number

of derivatives,6 it is naturally given by a general linear combination of the invariant one

forms,

S =

∫
bA

(
LA

)∗
dτ, (3.1)

where
(
LA

)∗
stands for the pullback of LA to the particle’s worldline and the bA’s are

arbitrary coefficients.

It must be noted here that there is no a priori reason to rule out the fermionic one-

forms appropriately multiplied by Grassman numbers in order to obtain the right Grassman

parity for a bosonic action. For simplicity, this possibility will not be considered here. The

choice of only the bosonic LI MC forms as lagrangians is the first physical assumption in

the present construction. Using (A.11)-(A.14), the mechanical model invariant under the

PSU(1, 1| 2) group, constructed by taking the pullback along a worldline parameter τ , of

a linear combination of the bosonic one-forms LH , LD, LK , La reads,

S =

∫
L dτ =

∫ (
bHLH + bDLD + bKLK + baL

a
)∗

=

∫
(L0

K)∗NK + (L0
D)∗ND + (L0

H)∗NH + ba
(
L0

a

)∗
+ N∗

rest . (3.2)

The coefficients bA are real but otherwise arbitrary, having the dimensionalities [bH ] =

l−1, [bK ] = l1, [bD] = [ba] = l0. The NH , ND, NK and Nres are defined in the appendix A

by equations (A.26), (A.27), (A.28) and (A.29), respectively. The SU(2) coset one-forms

L0
a are given in (A.18), and the SO(1, 2) coset forms L0

K , L0
D and L0

H are given in (A.17).

By inspection of (3.2) it can be noted that the velocity ω̇ appears, up to a boundary

term, linearly in the lagrangian and therefore ω can be eliminated from the action using

its own equation of motion,

δS
δω

= 0 =⇒ ω =
−ṄK − żNK + 2e−z ṫND

2e−z ṫNK
. (3.3)

Introducing the new bosonic coordinate q, defined by

q =
√

2ez/2

(
NK

bK

)1/2

, (3.4)

the action (3.2) can now be written as

S =

∫
dτ

[
bK

q̇2

2ṫ
− 2ṫ

bKq2
(NHNK − N2

D) − NDṄK

NK

]
+ N∗

rest + ba(L0
a)

∗. (3.5)

6Other combinations can be taken, for instance
p

bABLA
0

LB
0

, where LA = LA
0 dτ . In general this la-

grangian will contains accelerations eventually.
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This action clearly resembles the conformal mechanics of [2], with the characteristic q−2

potential as the interaction term which produces the nontrivial coupling between bosonic

and fermionic degrees of freedom.

One of the relevant aspects found in [1] is the explicit relation between conformal

mechanics and a physically nontrivial model describing a charged particle in the near

horizon geometry of an extremal, four-dimensional Reissner-Nordström black hole. Indeed,

it is trivial to show that the conformal mechanics of [2] [17] describes the motion of a

particle on a background isometric to AdS2 . If the particle is charged, however, it would

also interact with the electromagnetic field of the black hole, and the trajectory would no

longer be a geodesic of the manifold.

In order to compare with ref. [1], it is enlightening to write down the purely bosonic

part of the action.

S|η=η†=λ=λ†=0 =

∫
dτ

[
bK

q̇2

2ṫ
− 2ṫ

q2

(
bHbK − b2

D

bK

)]
+ ba(L0

a)
∗, (3.6)

which explicitly reflects the global invariance under the bosonic part of PSU(1, 1|2), name -

ly, SO(1, 2) × SU(2). As θ̇3 enters linearly in ba(L
0
a)

∗, see (A.18), the θ3 coordinate can be

eliminated as well by using its own equation of motion. The resulting action reads

S|η=η†=λ=λ†=0 =

∫
dτ

[
bK

q̇2

2ṫ
− 2ṫ

q2

(
bHbK − b2

D

bK

)
+

√
b2
1 + b2

2

√
θ̇2
1 cos2 θ2 + θ̇2

2

−b3 θ̇1 sin θ2

]
. (3.7)

=

∫
dτ [L(q) + L(θa)] (3.8)

The direct product geometry of the BR metric (1.1) is reflected in the first three terms.

They represent a geodesic in AdS2 and a geodesic in S2. The last term can be interpreted,

following [18], as the electric coupling of the particle with a monopole field located at the

center of S2. Further physical life can be given to this model, comparing L(q) and L(θa)

of (3.8) with equation (2.11) of [1] and equation (8.4) of [18] respectively, the constants bA

can be identified as

bK = m
(
bHbK − b2

D

)
= 2M2 (m − e) m + J2 baba = J2 b3 = ge. (3.9)

Here m is the mass, e the electric charge and J is the angular momentum of the particle,

while M is the black hole mass and g is the monopole charge. The authors of [1] used

the constant angular momentum on shell condition, replacing it in the equation of motion

of q and, in advance of quantization, wrote the angular momentum as l(l + 1). In the

identification (3.9) this convention has not been followed.

The appearance of a monopole field has its roots in the fact that SU(2) is homeomorphic

to S3, since an atlas over S3 defines a fiber bundle (the Hopf bundle) classified by the

transition function in the n = 1 homotopy class of π1(U(1)) = Z. This is identical to the

characterization of a magnetic monopole of unit strength.

– 6 –
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An interesting mechanism has operated here: the elimination of some non dynamical

variables from their equations of motion produced a recombination of the bA’s among

themselves, giving rise to the effective parameters of the theory (3.7).

The relation between the parameters of the conformal mechanics and observables have

a nice example in the de Alfaro, Fubini and Furlan conformal mechanics [2], where the

coefficient g in the hamiltonian

H =
1

2

(
p2 +

g

q2

)
(3.10)

can be recognized as the Casimir operator of the conformal group SO(2, 1), classifying the

irreducible representations of that group [2].

In the action (3.7) there is no direct coupling between the bosonic coordinates q and

θa; they interact only through the fermions.

4. Local Symmetries

4.1 Local symmetries in general

In order to examine the local symmetries of the action (3.2) using the NLR approach we

followed the procedure developed in [10]. The gauge symmetries are interpreted as right

actions on the coset7.

The general variation of the LI MC one-forms can be described only in terms of the

structure constants
(
fA

BC

)
, the LI MC forms and the variation of the Goldstone fields

themselves8

δLA = d[δZA] + fA
BCLC

[
δZB

]
, (4.1)

where [δZA] is LA in which dZM is replaced by δZM

[δZA] = δZMLM
A for LA = dZMLM

A (4.2)

The crucial point is the relation between [δZA] and the right transformation on the group

element

g(ZM ) → g(ZM )eiεAGA = g(ZM + δRZM ) [δRZA] = εA, (4.3)

where δRZ now refers to the right action of the Goldstone field Z. After the pullback is

taken on the LI MC one-forms, the ε parameter can be made local, ε → ε(τ). Using (4.1),

the LI MC variations can be computed:

δRLH = d[δRt] + LD[δRt] − LH [δRz] + iLQ[δRη†] − i[δRη]LQ†

(4.4)

δRLK = d[δRw] − LD[δRw] + LK [δRz] + iLS [δR λ†] − i[δRλ]LS†

(4.5)

δRLD = d[δRz] + 2LK [δRt] − 2LH [δRw] + LQ[δR λ†] + [δRλ]LQ† − [δRη]LS† − LS [δRη†]

(4.6)

δRLa = d[δRθa] + εabcLc[δRθb] − i
(
LQσa[δRλ†] − [δRλ]σaLQ† − [δRη]σa LS†

)

−iLSσa[δRη†] (4.7)

7For some earlier work in this direction, see for example [19]
8In the case of kappa transformations of superbranes, see for example [20, 21]
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The invariance of the action — modulo surface terms — under the above variations requires



bH 0 −bK

0 bH 2bD

2bD bK 0







[δRt]

[δRz]

[δRw]


 = 0 (4.8)

baεabc[δRθb] = 0 (4.9)

(
[δRη] , [δRλ]

) (
bH −ibD − baσa,

ibD − baσa bK

)
= 0. (4.10)

Provided the determinant of the system vanishes, this homogeneous equations have non-

trivial solutions for [δRZM ] corresponding to the different local invariances.

Since the determinant appearing in eq (4.8) vanishes, there is a non-trivial solution

[δRt] = ε(τ), [δRz] = −2
bD

bK
ε(τ), [δRw] =

bH

bK
ε(τ), and others = 0, (4.11)

where ε(τ) is an arbitrary function. We will refer to this transformation as T symmetry.

The (4.9) is the local U(1) transformation

[δRθa] = baα(τ), and others = 0, (4.12)

where α(τ) is an arbitrary function.

The T and U(1) symmetries are present for any non-vanishing value of the coupling

constants. This implies that the number of physical bosonic degrees of freedom described

by the action (3.2) is two, therefore it is not describing the most general motion of the test

particle in the near horizon of geometry of a N = 2 charged four-dimensional extremal

black hole, that has three bosonic degrees of freedom.

The number of linearly realized worldline supersymmetries of the lagrangian is related

to the rank of the matrix in (4.10). When bHbK 6= b2
D + baba the 4 × 4 matrix in (4.10)

has the maximal rank and (4.10) only has trivial solution [δRη] = [δRλ] = 0. In this case

the system has no local fermionic symmetry and all supersymmetries are broken (non-BPS

particle).

If

bHbK − b2
D = baba, (4.13)

the rank of the matrix (4.10) is 2 and the number of linearly realized supersymmetries of

the worldline is 4 (BPS particle). This relation implies the equality between the Casimir

invariants of the SU(2) and SO(1,2) sectors.

The action acquires a new local symmetry, the so-called κ symmetry. The correspond-

ing non-trivial solution is

[δRη] = κη(τ), [δRλ] = κη(τ)(
ibD

bK
+

baσa

bK
), (4.14)

and other bosonic [δRZA] are zero,

[δRt] = [δRz] = [δRω] = [δRθa] = 0, (4.15)

where κi
η(τ) is a SU(2) doublet arbitrary Grassman-valued function of τ .

– 8 –
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Following [10] we can construct the generators of the local algebra. In our context the

local symmetries T , U(1) and κ, are

T = H − 2
bD

bK
D +

bH

bK
K − 2

ba

bK
Ja, (4.16)

B = baJa, (4.17)

Q̃i = Qi + Sj

(
− ibD

bK
δj

i +
ba

bK
(σa)j

i

)
(4.18)

Q̃†
i = Q†

i +

(
ibD

bK
δi

j +
ba

bK
(σa)i

j

)
S†

j . (4.19)

In the case of (4.13) they generate unbroken symmetry of the Lagrangian (3.2) and

form a subalgebra of the psu(1, 1|2),
[
Q̃i, Q̃†

j

]
+

= δi
jT,

[
Q̃i, Q̃j

]
+

=
[
Q̃i, T

]
= 0, (4.20)

[
B, Q̃i

]
=

1

2
Q̃j(baσa)j

i, [B,T ] = 0. (4.21)

The diffeomorphism invariance, τ → τ ′(τ) is not independent of the local symmetries

previously discussed. Moreover, when the condition (4.13) for κ symmetry is satisfied,

diffeomorphims are equivalent to linear combinations of the local symmetries obtained

from the right translations, with parameters chosen in terms of δτ = ε(τ) as

ε(τ) = (LH)∗ε(τ), α(τ) =
(bbLb)∗

bcbc
ε(τ), κη(τ)s(θ) = (LQ)∗ε(τ). (4.22)

In the non-BPS case there is no kappa transformation.

In the appendix C it is shown that these combinations of the local transformations

and diffeomorphisms differ by trivial variations, i.e. (graded)anti-symmetric combinations

of the equations of motion.

4.2 Kappa symmetry

It has been shown that if the constants of the Lagrangian satisfy (4.13), the action is

invariant under the kappa transformations. The transformation of the fields around the

configuration η = η† = 0,9 is obtained from (4.14) and (4.15) as

δκη|η=η†=0 = κηs(θ)−1, δκη†|η=η†=0 = s(θ)κη† . (4.23)

Where s(θ) is the spin one half representation of the SU(2) group, by redefinition of the pa-

rameter κ, s(θ) can be reabsorbed. Then it follows that in any neighborhood of η = η† = 0

the gauge slice

η = η† = 0 (4.24)

is accessible. In this gauge the remaining coordinates transform as

δκλ|η=η†=0 = κη −
1

2
κη(λλ†) − 1

2
λ(κηλ

† − λκη†) (4.25)

9The transformation for a general configuration is rather complicated. We give it in the OSP (2 |2 ) case

in the appendix D.

– 9 –



J
H
E
P
1
0
(
2
0
0
6
)
0
6
8

δκt|η=η†=0 = 0 (4.26)

δκz|η=η†=0 = −(λδκη† + δκηλ†) (4.27)

δκω|η=η†=0 = −ω(λδκη† + δκηλ†) +
i

2
(λδκλ† − δκλλ†) +

i

2
(λδκη† − δκηλ†)(λλ†)

(4.28)

δκθa|η=η†=0 = −i(λσbδκη† − δκησbλ
†) (Ra

b )
−1 (4.29)

As can be seen from the previous results, when the kappa condition (4.13) is satisfied,

it is possible to gauge away half of the fermions. In the next section diffeomorphism and

kappa symmetry are further fixed, residual transformations found and BPS states obtained.

4.3 Gauge fixed lagrangian and residual global transformations

The kappa symmetry can be used to further simplify the form of the lagrangian. In fact,

imposing (4.13), and setting η = η† = 0 and the static gauge t = τ , the action (3.5)

becomes

S =

∫
dt bK

[
q̇2

2
− 2

q2

(
1

4
(λλ†)2 − (λσaλ

†)Sab
bb

bK
+

baba

b2
K

)
− i

2
(λλ̇† − λ̇λ†)

]
+

(
L0

a

)∗
ba,

(4.30)

where, in this gauge,

q =
√

2e
z
2 . (4.31)

Moreover the coupling constant of q−2 computed in [1] for the kappa-symmetric particle

(e = m) is exactly reproduced.
g

2
= 4

baba

bK
= 4

J2

m
(4.32)

As it was previously pointed out, θ3 is non dynamical, its elimination reduces (4.30)

to

L = bK
q̇2

2
− 2

q2bK

(
b2
K

1

4
(λλ†)2 +

baba

b2
K

)
− i

2
bK(λλ̇† − λ̇λ†)

+
√

b2
1 + b2

2

√(
θ̇1 cos θ2 + j · e1

)2
+

(
θ̇2 + j · e2

)2

+b3

(
−θ̇1 sin θ2 + j · e3

)
, (4.33)

where ja = 2 (λσaλ†)
q2 and the orthonormal basis ea is given by

e1 =




cos θ2

sin θ1 sin θ2

cos θ1 sin θ2


 e2 =




0

cos θ1

− sin θ1


 e3 =




− sin θ2

sin θ1 cos θ2

cos θ1 cos θ2


 . (4.34)

It must be noted that action (4.33) still has the U(1) gauge invariance (4.12), δθb =

α(τ)ba

(
Lb

a

)−1
, which after θ3 is eliminated becomes

δθ1 = α̃(τ)(θ̇1 + j · e1/ cos θ2), δθ2 = α̃(τ)(θ̇2 + j · e2), (4.35)
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where

α̃(τ) =

√
b2
1 + b2

2√
(θ̇1 + j · e2/ cos θ2)2 + (θ̇2 + j · e2)2

α(τ), (4.36)

and δZM = 0 for other fields.

The gauge fixing has changed the form of the global transformations. This is be-

cause local transformations must be used in order to respect the gauge slice previously

chosen. This means that local compensating transformations must be introduced. It is

straightforward to show that they are given by

δ∗ (t − τ) |η=η†=0;t=τ =
(
εṫ + δκt + δGt

)
|η=η†=0;t=τ = 0 =⇒ ε = −δGt, (4.37)

δ∗η|η=η†=0;t=τ = (εη̇ + δκη + δGη) |η=η†=0;t=τ = 0 =⇒ κη = −δGη (4.38)

δ∗η†|η=η†=0;t=τ =
(
εη̇† + δκη† + δGη†

)
|η=η†=0;t=τ = 0 =⇒ κη† = −δGη†, (4.39)

where δG stands for any global SU(1, 1| 2) transformation. The residual transformations

for the remaining coordinates δ∗ are defined in the same way as the former variations, but

with the local parameters given by (4.37), (4.39),

δ∗Hq = εH q̇ δ∗Hλ = εH λ̇ δ∗Hθa = εH θ̇a (4.40)

δ∗Dq = εD

(q

2
− tq̇

)
δ∗Dλ = −tεDλ̇ δ∗Dθa = −tεDθ̇a (4.41)

δ∗Kq = −tεKq + t2εK q̇ δ∗Kλ = t2εK λ̇ δ∗Kθa = t2εK θ̇a (4.42)

δ∗aq = 0 δ∗aλ = − i

2
λσaε δaθ

b = R−1
ab ε (4.43)

δ∗Qi
q =

1√
2
εQλ† δ∗Qi

λ†
k =

1√
2q

λ†
kλ

†
iεQ δ∗Qi

θa = −iεQ

(
σbλ

†
)

i
R−1

ba

√
2

q

δ∗Qi
λk =

(
i

(
− ˙̃qq

2

)
δik − ba

bK
(σb)

k
i Sba +

1

2
δikλλ† − 1

2
λkλ

†
i

)
εQ

√
2

q
(4.44)

δ∗Si
q = it

1√
2
λ†

i εS δ∗Si
λ†

k = − it√
2q

λ†
kλ

†
i εS δ∗Si

θa = − t
√

2

q
εS

(
σbλ

†
)i

R−1
ba

δ∗Si
λk =

((
q2

2
− q̇q

2
t

)
δik + it

ba

bK
(σb)

k
i Sba − it

1

2
δik(λλ†) +

1

2
itλkλ

†
i )

) √
2

q
εS (4.45)

To study the existence of BPS states, the residual transformation of the fermions under

Q’s and S’s are considered. In this way, two BPS equations arise:

δ∗Qi
λk = δ∗

Q†
i

λ†
k = 0 =⇒

(
q̇q

2

)2

+
baba

b2
K

= 0, (4.46)

δ∗Si
λk = δ∗

S†
i

λ†
k = 0 =⇒

(
q2

2
− t

q̇q

2

)2

+ t2
baba

b2
K

= 0, (4.47)

As both of them are the sum of two positive terms, a necessary condition for the existence of

BPS states is ba = 0. Then, by eq. (4.32), the coupling constant vanishes and the system is
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just the free particle. Then, the q̇ = 0 configuration, (4.46), saturates the bound of the free

particle Hamiltonian H, meanwhile the q̇ = q
t configuration, (4.47), saturates the bound

of the free particle special conformal transformation generator K. So the existence of non

trivial 1/2 BPS states is ruled out.

4.4 Bosonic Motions

Let us now study the bosonic trajectories of our model. If we fix the diffeomorphism by

taking the gauge ṫ = 1 the Lagrangian (3.7) becomes

S =

∫
dτ

[
m

q̇2

2
− 2

mq2

(
bHbK − b2

D

)
+

√
b2
1 + b2

2

√
φ̇2 sin2 θ + θ̇2 + eg

(
−φ̇ cos θ

)]
,

(4.48)

where φ = θ1, θ = π
2 −θ2. The first class constraint associated to the U(1) gauge invariance

of the Lagrangian is,

Ψ =
1

2

[
p2

θ +

(
pφ + eg cos θ

sin θ

)2

− (b2
1 + b2

2)

]
∼ 0, (4.49)

where pq, pθ, pφ are the canonical momenta associated to the coordinates q, θ, φ. The Dirac

Hamiltonian is

H =
p2

q

2m
+

2

q2

(
bHbK − b2

D

bK

)
+ ΛΨ, (4.50)

where Λ is an arbitrary function of t. In the presence of a monopole background the

conserved angular momentum is

J = pθeφ −
(

pφ + eg cos θ

sin θ

)
eθ − (eg)er, (4.51)

where er, eθ, eφ are the othonormal unit vectors in the polar coordinates. The con-

straint (4.49) means that the value of J2 is fixed by parameters of the lagrangian as

J2 = p2
θ +

(
pφ + eg cos θ

sin θ

)2

+ (eg)2 ∼ b2
a. (4.52)

We have considered the kappa invariant case when (4.13) is satisfied. Furthermore, in

a gauge where the arbitrary function Λ appears as

Λ =
4

mq2
(4.53)

the Hamiltonian becomes

H∗ =
p2

q

2m
+

2

mq2
J2 =

p2
q

2m
+

2

mq2

(
p2

θ + (
pφ + eg cos θ

sin θ
)2 + (eg)2

)
. (4.54)

The corresponding lagrangian is

L∗ =
m

2
q̇2 +

mq2

8

(
θ̇2 + φ̇2 sin2 θ

)
− 2

(eg)2

mq2
− (eg)φ̇ cos θ. (4.55)
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The Lagrangian (4.55) agrees with the bosonic part of the D(2, 1, α = −1) superconformal

lagrangian considered in [11]. It coincides also with that of the D0 particle on a black hole

attractor [8] up to second order expansion in derivatives.

Although the form of the lagrangians coincides, the physical content of these models

is different. The lagrangian (4.55) has associated the constraint (4.49);

Ψ∗ =
1

2

[
(
mq2

4
)2(θ̇2 + φ̇2 sin2 θ)− (b2

1 + b2
2)

]
∼ 0. (4.56)

In both cases the trajectories of the particle are on a two dimensional cone. However, in our

case the total angular momentum squared is constrained by (4.56), it follows that in terms

of the parameters of our lagrangian the opening angle of the cone is fixed as tan−1(

√
b2
1
+b2

2

b3
).

5. Covariant AdS parametrization

At the quantum level, the conformal mechanics has no ground state associated to the

hamiltonian H. The wave function spreads out to spatial infinity. The authors of [2]

suggest that one should consider the eigenstates of the compact operator P0 = 1
2(H + K)

which has a discrete spectrum of normalizable eigenstates. From the perspective of the

particle motion near the black hole it corresponds to a different choice of time [1]. In fact

the conjugate variable to P0 is the global time of AdS2 and can describe the motion of

the particle entering through the horizon, instead the time conjugate to H only describe

the motion of the particle outside of the horizon. Therefore it is also natural to study the

dynamics of the superconformal particle using the new basis, that we call AdS basis. In

our approach this implies a new parametrization of the coset, that we take

g = gAdS2

0 gS2

0 ei(Qη̄+ηQ̄) ei(Sλ̄+λS̄) eiM01y eiJ3y′

, (5.1)

where

gAdS2

0 = eiP0x0

eiP1x1

, gS2

0 = eiJ1θ1

eiJ2θ2

(5.2)

and the AdS2 generators P0, P1,M01 are related to the conformal ones by

P0 =
H + K

2
, P1 = D, M01 =

H − K

2
. (5.3)

The MC one form is

Ω = LPµPµ + LM01M01 + LJaJa + LJ3J3 + QL†Q + LQQ† + SL†S + LSS†. (5.4)

where µ = 0, 1 and a = 1, 2. The invariant particle Lagrangian is a sum of bosonic forms

L = LPµbPµ + LM01bM01
+ LJaba + LJ3b3. (5.5)

In (5.1) we have put eiM01y, eiJ01y′
at the right so that dy and dy′ terms appear in the

lagrangian in total derivative forms and can be omitted. The Lagrangian is written as

L = (A sinh y + B cosh y + C) + (A′ sin y′ + B′ cos y′ + C ′). (5.6)
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where

A = bP1
LP0

1 + bP0
LP1

1 , B = bP0
LP0

1 + bP1
LP1

1 , C = bM01
LM01

1

A′ = b2L
J1

1 − b1L
J2

1 , B′ = b1L
J1

1 + b2L
J2

1 , C ′ = b3L
J3

1 (5.7)

where the explicit forms of LA
1 ’s are given in the appendix A. The Goldstone fields y and

y′ are non-dynamical variables and can be eliminated using their equations of motion and

L = −
√

b2
P0

− b2
P1

√
(LP0

1 )2 − (LP1

1 )
2
+ bM01

LM01

1

−
√

b2
1 + b2

2

√
(LJ1

1 )2 + (LJ2

1 )
2
+ b3 LJ3

1 . (5.8)

As the previous discussions in section 4 the action from (5.8) is invariant under two bosonic

local symmetries, diffeomorphism and U(1). It is also invariant under the kappa symmetry

if the coefficients of the Lagrangian are verifying

b2
P0

− b2
P1

− b2
M01

= baba. (5.9)

which is corresponding to (4.13), bHbK − b2
D = baba.

As in the conformal basis this relation implies and equality between the Casimir in-

variants of SU(2) and SU(1, 1). The two WZ terms represents the coupling to the elec-

tromganetic field.

The lagrangian (5.8), where the fermions have been set to zero,

L = −
√

b2
P0

− b2
P1

√
(dx0 cosh

x1

R
)2 − (dx1)2 + bM01

dx0

R
sinh

x1

R

−
√

b2
1 + b2

2

√
(dθ1 cos θ2)2 + (dθ2)2 − b3 dθ1 sin θ2, (5.10)

does not reproduce the motion of a relativistic particle in AdS2 × S2, because the la-

grangian here has two square roots which is not equivalent to the lagrangian studied in

references [13], [14, 8, 15]. The two systems have different numbers of degrees of freedom

since they possess different bosonic gauge symmetries. A similar effect occurs in the con-

formal basis due to the appearance of two gauge symmetries, diffeomorphisms and U(1)

transformations. In the D0 brane lagrangian, instead, there are only diffeomorphisms.

Since we have interpreted the gauge transformations as induced by the right action on the

coset by unbroken translation [10], it means that there are two unbroken translations given

by P0 and the baJa in the present case.

6. Discussion and Outlook

The BPS and non BPS dynamics of a superconformal particle has been constructed, using

only the method of non-linear realization without resorting to superfields or requiring

further constraints [9]. The coset PSU(1, 1|2) had been considered, as in [5, 6]. The

particle action contains six couplings constants and is invariant under two set of bosonic

gauge symmetries, diffeomorphisms and U(1) gauge transformations. When the condition
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on the coupling constants (4.13) is verified, the action becomes also kappa symmetric. This

relation implies the equality between the Casimir operators of the SU(2) and the SU(1, 1)

sectors. Following reference [10] these gauge symmetries can be interpreted as generated

by the unbroken “translations” via the right action. Furthermore, the algebra verified by

the generators of gauge transformations was found.

The description of the dynamics has been done in two different bases or parametriza-

tions of the coset: the conformal basis and the AdS basis. In both cases the kappa-

symmetric and non kappa-symmetric models can be viewed as describing the equatorial

motion of a particle near the horizon of a N = 2 charged four-dimensional extremal black

hole. It turns that the particle has its total angular momentun squared fixed, this value

is determined by the parameters appearing in the lagrangian. They are not describing the

entire three dimensional dynamics of the D0 particle.

The analysis of the existence of BPS states shows trough equations (4.46) and (4.47)

that they only exist in a highly degenerate case of the conformal mechanics, namely, in

the free particle case. A natural question then arises as to whether it is possible to obtain

the lagrangian of a D0 brane from the method of non-linear realization without any extra

geometrical or physical requirements. This point will be addressed in a future study.
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A. Notation and conventions

The psu(1, 1|2) algebra

[H,D] = iH, [K,D] = −iK, [H,K] = 2iD, (A.1)

[Ja, Jb] = iεabcJc, (A.2)[
Qi, Q†

j

]
+

= δi
jH,

[
Si, S†

j

]
+

= δi
jK, (A.3)

[
S†

i, Q
j
]
+

= −(σa)i
jJa + iδj

iD,
[
Q†

i, S
j
]
+

= −(σa)i
jJa − iδj

iD, (A.4)
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[
D,Qi

]
= − i

2
Qi,

[
D,Q†

i

]
= − i

2
Q†

i, (A.5)

[
D,Si

]
=

i

2
Si,

[
D,S†

i

]
=

i

2
S†

i, (A.6)

[
K,Qi

]
= Si,

[
K,Q†

i

]
= −S†

i, (A.7)

[
H,Si

]
= Qi,

[
H,S†

i

]
= −Q†

i (A.8)

[
Ja, Q

i
]

=
1

2
Qj(σa)j

i,
[
Ja, Q

†
i

]
= −1

2
(σa)i

jQ†
j , (A.9)

[
Ja, S

i
]

=
1

2
Sj(σa)j

i,
[
Ja, S

†
i

]
= −1

2
(σa)i

jS†
j. (A.10)

Maurer-Cartan forms

The Maurer-Cartan one-forms are explicitly given by

LH = L0
H +

1

4
L0

K(ηη†)2 − i

2
(ηdη† − dηη†), (A.11)

LD = L0
D{1 +

1

2
(λη† + ηλ†)} +

i

2
L0

K(ηη†)(λη† − ηλ†) + (λdη† + dηλ†), (A.12)

LK = L0
K{1 + (λη† + ηλ†) − 1

2
(ησaη

†)(λσaλ
†) +

1

4
(ηη†)(λλ†)(λη† + ηλ†)} +

1

4
LH(λλ†)2

− i

4
L0

D(λη† − ηλ†)(λλ†) − i

2
(λdλ† − dλλ†) − i

2
(λdη† − dηλ†)(λλ†), (A.13)

LJb = L0
Jb

+

[
i(λσadη† − dησaλ

†) +
i

2
L0

D

(
λσaη

† − ησaλ
†
)

+L0
K{−(ησaη

†) − 1

2
(ηη†)

(
λσaη

† + ησaλ
†
)
} − LH(λσaλ

†)

]
Sab(θ), (A.14)

LQ =

[
dη +

1

2
L0

Dη − iLHλ − i

2
L0

K(ηη†)η

]
s(θ), (A.15)

LS =

[
dλ +

1

2
dη(λλ†) − λ(λdη†) − LH

i

2
(λλ†)λ − L0

D

1

2

(
λ + (λη†)λ − 1

2
η(λλ†)

)

+L0
K{−iη + (ησaη

†)
i

2
λσa −

i

2
(ηη†)(λη†)λ − i

4
η(ηη†)(λλ†)}

]
s(θ). (A.16)

LQ†
and LS†

are conjugate to LQ and LS respectively. L0
H,D,K are the Maurer-Cartan

forms associated to the SO(1,2),

L0
H = −e−zdt, L0

D = 2e−zωdt + dz, L0
K = −e−zω2dt − ωdz + dω (A.17)

while those of the SU(2) are

L0
a = dθb Lba, Lba =




cos θ2 cos θ3 cos θ2 sin θ3 − sin θ2

− sin θ3 cos θ3 0

0 0 1


 . (A.18)

s(θ) and Sab(θ) are spinor and adjoint representations of the SU(2) rotation eiθaJa given

in (A.20) and (A.21) in the appendix A respectively.
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SU(2) matrices

The group element gJ in the SU(2) sector (2.1) is

gJ = eiθ1J1eiθ2J2eiθ3J3 (A.19)

Sab is the adjoint representation of the gJ

Sab =




cos θ2 cos θ3 cos θ2 sin θ3 − sin θ2

sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 sin θ1 sin θ2 sin θ3 + cos θ1 cos θ3 sin θ1 cos θ2

cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3 cos θ1 cos θ2




(A.20)

while the spinorial representation is:

s = ei θ1

2
σ1ei θ2

2
σ2ei θ3

2
σ3 . (A.21)

It holds

s†σas = Sabσb, (ST )addSdb = εabcL
0
c , s†ds =

i

2
L0

cσc. (A.22)

The SU(2) left invariant one forms (A.18) are

L0
Ja

= dθb Lba, L =




cos θ2 cos θ3 cos θ2 sin θ3 − sin θ2

− sin θ3 cos θ3 0

0 0 1


 (A.23)

The right invariant one forms defined by −idgJg−1
J = JaR

0
Ja

are

R0
Ja

= dθb Rba, R =




1 0 0

0 cos θ1 − sin θ1

− sin θ2 − sin θ1 cos θ2 cos θ1 cos θ2


 . (A.24)

The matrix R−1
ab is the inverse of R;

R−1 =




1 0 0

sin θ1 tan θ2 cos θ1 sin θ1/ cos θ2

cos θ1 tan θ2 − sin θ1 cos θ1/ cos θ2


 = S L−1. (A.25)

When the lagrangian was constructed in (3.5), the following shorthands are used

NH = bH +bK
1

4
(λλ†)2 − (λσaλ

†)Sabbb (A.26)

ND = bD{1+
1

2
(λη†+ηλ†)} − bK

i

4
(λη† − ηλ†)(λλ†)+

i

2

(
λσaη

† − ησaλ
†
)
Sabbb (A.27)

NK = bK{1+(λη†+ηλ†) − 1

2
(ησaη

†)(λσaλ
†)+

1

4
(ηη†)(λλ†)(λη†+ηλ†)+

1

16
(ηη†)2(λλ†)2}

+bH
1

4
(ηη†)2+bD

i

2
(ηη†)(λη† − ηλ†)

−{(ησaη
†)+

1

2
(ηη†)

(
λσaη

†+ησaλ
†
)
+

1

4
(ηη†)2(λσaλ

†)}Sabbb (A.28)
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Nrest = bH{− i

2
(ηdη† − dηη†)}+bD{(λdη†+dηλ†)}

+ bK{− i

2
(λdλ† − dλλ†) − i

2
(λdη† − dηλ†)(λλ†) − i

8
(ηdη† − dηη†)(λλ†)2}

+ {i(λσadη† − dησaλ
†)+

i

2
(ηdη† − dηη†)(λσaλ

†)}Sabbb. (A.29)

MC forms in the AdS basis

The bosonic part of the MC forms in the AdS basis are given as

LP0

0 = dx0 cosh
x1

R
, LP1

0 =dx1, LM01

0 =
dx0

R
sinh

x1

R
, (A.30)

LJ1

0 = dθ1 cos θ2, LJ2

0 =dθ2, LJ3

0 =−dθ1 sin θ2. (A.31)

The LP0

1 , LP1

1 , LM01

1 , LJb
1 in (5.7) are including the fermionic contributions and are obtained

as

LP0

1 = R(LH
1 + LK

1 ), LP1

1 = RLD
1 , LM01

1 = LK
1 − LH

1 , LJb

1 . (A.32)

Here LH
1 , LK

1 , LD
1 , LJb

1 are obtained from LH , LK , LD, LJb in the conformal basis (A.11)-

(A.14) in which L0
H , L0

K , L0
D, L0

Jb
are replaced by

L0
H → LP0

0

2R
− LM01

0

2
, L0

K → LP0

0

2R
+

LM01

0

2
, L0

D → LP1

0

R
, L0

Jb
→ LJb

0 , (A.33)

where the bosonic MC one forms in the AdS base are given in (A.30) and (A.31).

B. PSU(1,1|2) transformations

The bosonic transformations of PSU(1, 1|2) are given in (2.7)-(2.10). Supersymmetric and

superconformal transformations of the goldstone fields can be calculated in the same way,

obtaining however, complicated expressions. It is convenient to give them here for further

references.

• Ordinary supersymmetry:

δQt =
i

2
ez/2

[
−η† + i

1

2
ω

(
ηη†

)(
η† − λ†

2∆

(
ηη†

))]
εQ

δQz =
1

2
ω2e−z/2

(
ηη†

)(
η† − λ†

2∆

(
ηη†

))
εQ

δQω = − i

2
e−z/2ω2

[
η† + i

1

2
ω

(
ηη†

)(
η† − λ†

2∆

(
ηη†

))]
εQ − ωλ†

2∆
e−z/2εQ (B.1)

δQi
ηk = e−z/2

(
δik +

i

2
ω

(
ηη†

)(
−δik +

λ†
iηk

∆

))
εQi

δQi
η†k = iωe−z/2

(
η† − λ†

i

∆

(
ηη†

))
η†kεQi
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δQi
λk = iωe−z/2

(
δik − λ†

iηk

2∆

)
εQi

δQi
λ†

k = iωe−z/2 λ†
iη

†
k

2∆
εQi

(B.2)

δQθb = −iωe−z/2

(
iσaη

† − λ†

2∆

(
iησaη

†
))

PabεQi
(B.3)

Where

∆ = 1 +
ηλ† + λη†

2
. (B.4)

The transformations under Q† are obtained by taking conjugations. For example from (B.2)

δ
Q†

i

η†k = e−z/2

(
δik + i

2ω
(
ηη†

) (
δik +

λiη
†
k

∆

))
ε
Q†

i

. (B.5)

• Superconformal transformations

δSt =
i

2
ez/2

[
itη† +

1

2
(ez + tω)

(
ηη†

)(
η† − λ†

2∆

(
ηη†

))]
εS

δSz = − i

2
ωe−z/2 (ez + tω)

(
ηη†

)(
η† − λ†

2∆

(
ηη†

))
εS − ez/2η†εS

δSω =
i

2
e−z/2ω2

[
itη† − 1

2
(ez + tω)

(
ηη†

) (
η† − λ†

2∆

(
ηη†

))]
εS − ez/2η†ωεS

+i
λ†

2∆

(
ez/2 + tωe−z/2

)
εS (B.6)

δSi
ηk =

(
−ite−z/2δik +

1

2

(
ez/2 + tωe−z/2

) (
ηη†

) (
−δik +

λ†
iηk

∆

))
εSi

(B.7)

δSi
η†k =

(
ez/2 + tωe−z/2

) (
ηη†

) (
η†i −

λ†
i

∆

(
ηη†

))
η†kεSi

δSi
λk =

(
ez/2 + tωe−z/2

) (
δik − λ†

iηk

2∆

)
εSi

δSi
λ†

k =
(
ez/2 + tωe−z/2

) λ†
iη

†
k

2∆
εSi

δSθb = −
(
ez/2 + tωe−z/2

)(
iσaη

† − λ+

2∆

(
iησaη

†
))

PabεS

(B.8)

C. Diffeomorphism in terms of the gauge symmetries

It is shown here that the diffeomorphism of the action (3.2) is equivalent to a suitable

combination of the T -gauge (4.11), U(1) (4.12) and kappa (4.14) transformations for the

BPS case bHbK = b2
D + baba, (4.13).
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C.1 Trivial Symmetry

The Euler derivatives (L)M are defined as

δL = (L)MδZM + surface term, (C.1)

any action is invariant under a transformation of the form

δZM = (L)NANM , AMN = −(−)MNANM , (C.2)

that is, AMN is graded anti-symmetric. (−)MN = −1 when both M and N are odd indices

and (−)MN = +1 otherwise. It is a trivial symmetry and does not lead to a Noether

charge. Now the Lagrangian is (3.2).

L = bALA. (C.3)

In this appendix the pullback on LA is tacitly understood. The Euler derivative (L)M is

(L)M = bAfA
BC(ŻNLN

C)(LM
B)(−1)M(M+B). (C.4)

In the present formulation we use all group coordinates ZM the L′
M

B ≡ (LM
B)(−1)M(M+B)

has the inverse L′
B

M . It is convenient to define

[L]B = (L)ML′
B

M
= bAfA

BC(ŻNLN
C). (C.5)

Using it (C.1) is written as

δL = [L]A[δZA] + surface term. (C.6)

Then a transformation is trivial if [δZA] is written as a (graded) antisymmetric combination

of the equations of motion (C.5),

[δZA] = [L]BÃBA, ÃAB = −(−)ABÃBA. (C.7)

C.2 Geometrical diffeomorphism

For the geometrical diffeomorphism

δdiffZM = εŻM , →
[
δdiff ZA

]
= εŻM LM

A = εLA (C.8)

We will show the geometrical diffeomorphism is not independent of the gauge transforma-

tions but equivalent to a combination of the gauge transformations. More precisely they

differ by a trivial transformation discussed above.

The gauge transformations of (3.3-6) is

[δgauget] = ε(τ), [δgaugez] = −2
bD

bK
ε(τ), [δgaugew] =

bH

bK
ε(τ),

[δgaugeθ
a] = bJaα(τ),
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[δgaugeη] = κη(τ)s(θ), [δgaugeλ] = κη(τ)s(θ)(
ibD

bK
+

baσa

bK
). (C.9)

Let ∆ is difference of “δdiff ” and “δgauge”,

[∆t] = = εLH − ε(τ), [∆z] = εLD + 2
bD

bK
ε(τ),

[∆w] = εLK − bH

bK
ε(τ), [∆θa] = εLJa − bJaα(τ),

[∆η] = εLQ − κη(τ)s(θ), [∆λ] = εLS − κη(τ)s(θ)(
ibD

bK
+

baσa

bK
), (C.10)

We choose the gauge parameter functions ε, α, κ as

ε(τ) = εLH , α(τ) = ε
(bbL

b)∗

b2
c

, κη(τ)s(θ) = εLQ (C.11)

so that, using Euler derivatives in (C.5),

[∆t] = 0,

[∆z] =
ε

bK

(
bKLD + 2bDLH

)
= − ε

bK
[L]K ,

[∆w] =
ε

bK

(
bKLK − bHLH

)
=

ε

bK
[L]D,

[∆θa] =
ε

b2
c

εabcbc(εbdebdL
e) = − ε

b2
c

εabcbc [L]b,

[∆η] = 0,

[∆λ] =
ε

bK

(
bKLS − LQ(ibD + baσa)

)
= −i

ε

bK
[L]S . (C.12)

We also have for the conjugate coordinates

[
∆η†

]
= 0,

[
∆λ†

]
= i

ε

bK
[L]S† . (C.13)

From (2.1) remembering that the coordinate for S is λ† while that of S† is −λ they are

written in the matrix form




[∆t]

[∆z]

[∆w]

[∆θa]

[∆η†]

−[∆η]

[∆λ†]

−[∆λ]




T

=




[L]H
[L]D
[L]K
[L]Jb

[L]Q
[L]Q†

[L]S
[L]S†




T



. . . . . . . .

. . ε
bK

. . . . .

. − ε
bK

. . . . . .

. . . − ε
b2
d

εabcbc . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . i ε
bK

. . . . . . i ε
bK

.




. (C.14)

The matrix appearing here is graded anti-symmetric and the transformation ∆ is shown

to be trivial.
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In the non-BPS case, bHbK − b2
D 6= b2

Ja
, there is no kappa symmetry and κη is taken

to be zero in (C.10) and ( C.11). In this case

[∆η] = εLQ = −iε
[L]Q bK − [L]S (ibD − baσa)

bHbK − b2
D − b2

Ja

,

[∆λ] = εLS = −iε
[L]S bH + [L]S (ibD + baσa)

bHbK − b2
D − b2

Ja

. (C.15)

They are also graded anti-symmetric combinations of the equations of motion and the

difference of the diffeomorphism and the H and U(1) transformations is a trivial transfor-

mation.

D. Conformal mechanics invariant under OSP (2|2)

In this appendix we explicitly derive the kappa transformation of the OSP (2|2) case in

an arbitrary configuration. Furthermore kappa invariant and quasi invariant variables are

constructed and the lagrangian is written in terms of them. To show the relation with the

former case a dictionary is given.

The OSP(2|2) is a subalgebra of SU(1, 1| 2) whose generators are

H, K, D, B = −2J2 (D.1)

and

Qi =
1√
2
(Qi + Q†

i), Si =
i√
2
(Si − S†

i). (D.2)

They satisfy OSP (2|2) algebra:

[H,D] = iH [K,D] = −iK [H,K] = 2iD (D.3)

[Qi,Qj]+ = δijH [Si,Sj ]+ = δijK [Qi,Sj ]+ = δijD +
1

2
εijB (D.4)

[D,Qi] = − i

2
Qi [D,Si] =

i

2
Si [K,Qi] = −iSi (D.5)

[H,Si] = iQi [B,Qi] = −iεijQj [B,Si] = −iεijSj (D.6)

The group element is parametrized as

g = e−itHeizDeiωKeiη̃Qeiλ̃SeiαB (D.7)

All formulas of OSP(2|2) must be given from those of the SU(1,1|2) by the following

replacements

ηi → − η̃i

√
2
, η†i → η̃i

√
2
, η̃ =

1√
2
(η†i − ηi)

λi → i√
2
λ̃i, λ†

i →
i√
2
λ̃i, λ̃ =

−i√
2
(λ†

i + λi)

θ2 = −2α, and θ1 = θ3 = 0. (D.8)
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The components of the left invariant Maurer-Cartan form are:

LH = −e−zdt +
i

2
(ηdη)

LK = dω

(
1 + i(λη) +

1

8
(λελ)(ηεη)

)
− ωdz

(
1 + i(λη) +

1

8
(λελ)(ηεη)

)

−ω2e−zdt

(
1 + i(λη) +

1

8
(λελ)(ηεη)

)
+

i

2
(λdλ)

LD = dz

(
1 +

i

2
(λη)

)
+ 2ωe−zdt

(
1 +

i

2
(λη)

)
+ i(λdη)

LB = dα +
i

4
dω (ηεη) − i

4
dz ((λεη) + ω(ηεη))

−e−zdt
i

4

(
(λελ) + 2ω(λεη) + ω2(ηεη)

)

− i

2
(λεdη) − 1

8
(λελ)(ηdη)

LQ = (cos α + ε sinα)

[
dη +

1

2
η dz + e−zdt(λ + ωη) − i

2
λ(ηdη)

]
,

LS = (cos α + ε sin α)

[
dλ+(η− i

4
ελ(ηεη)) dω−dz

(
1

2
λ + ηω+

i

8
εη(λελ) − i

4
ελω(ηεη)

)

−e−zdt

(
ωλ + ω2η +

i

4
ωεη(λελ) − i

4
ω2ελ(ηεη)

)
− i

4
εdη(λελ)

]
, (D.9)

where ε = iσ2.

Now the action is:

S =

∫
Ldτ =

∫ (
bHLH + bKLK + bDLD + bBLB

)∗
(D.10)

Under κ variations satisfying

[δt] = [δz] = [δα] = [δω] = 0 (D.11)

the LI one forms transform as:

δLH = −iLQ [δη] δLK = −iLS [δλ] δLD = −i
(
LQ [δλ] + LS [δη]

)
(D.12)

δLB = − i

2

(
LQε [δλ] − LSε [δη]

)
. (D.13)

The condition for the lagrangian (D.10) to be kappa invariant is given by:

[δη] = − 1

bH

(
bD +

1

2
bBε

)
[δλ] [δλ] = − 1

bK

(
bD − 1

2
bBε

)
[δη] (D.14)

which in turn implies:

bKbH = b2
D +

1

4
b2
B . (D.15)

When this is verified it is kappa symmetric else it describes non-BPS paricle.
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The kappa transformations of the BPS particle are found as follows. Due to the former

condition, (D.11), we can find the explicit form of the kappa variations for the bosonic fields

in term of the fermionic ones:

δκt =
i

2
ezηδκη

δκz = −
(

1 − i

2
(λη)

)
iλδκη − ωiηδκη

δκω = − (1 − i(λη))
i

2
λδκλ −

(
1 − i

2
(λη)

)
iωλδκη − i

2
ω2ηδκη

δκα =
i

2
(λεδκη) − 1

8
(ηεη) (λδκλ) +

1

4
(λεη) (λδκη). (D.16)

Introducing kappa parameters:

[δη] = (cos α + ε sin α) κη [δλ] = (cos α + ε sinα) κλ, (D.17)

we get

δκη = κη +
i

2
η (λκη) δκλ = κλ +

i

2
η (λκλ) . (D.18)

(D.14) is solved for κλ as

κλ = − 1

bK
(bD − 1

2
bBε)κη . (D.19)

We can introduce the kappa invariant variables; fermionic coordinates:

Ψ = (λ +
1

bK
(bD − bB

2
ε)η) +

ibB

4bK
(λη)εη. (D.20)

and the bosonic coordinate:

q =
√

2e
z
2

(
NK

bK

) 1

2

. (D.21)

Using the kappa condition (D.15) the lagrangian is expressed in terms of the kappa invariant

variables:

L = bK
q̇2

2ṫ
− 2ṫ

bKq2

(
b2
B

4
+

ibBbK

4
(ΨεΨ)

)
+ bK

i

2
ΨΨ̇ + (surface term). (D.22)
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